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University of California, Berkeley
Physics 105 Fall 2000 Section 2 (Strovink)

ASSIGNMENT 10

Reading:
105 Notes 12.1-12.4
Hand & Finch 9.1-9.6

1. and 2. (double credit problem)
The Foucault gyrocompass is a gyroscope that
eventually, taking advantage of frictional damp-
ing, points to true (not magnetic) north. Thus
it is an essential guidance system component.

The gyrocompass may be modeled as a thin disk
spinning with angular frequency ω0 about its
symmetry axis z′′. This axis can move freely
in the horizontal (North-South-East-West) plane
only. As exhibited in the following diagrams, the
z′′ axis makes an angle α(t) with North. The gy-
rocompass is located at colatitude θ on an earth
spinning with angular frequency Ω.

Assuming that ω0 � Ω and ω0 � α̇, prove that
α(t) oscillates about α = 0 provided that α � 1.
Find the angular frequency of oscillation. Note
that friction in the bearings will eventually damp
out this oscillation, enabling the gyrocompass to
point to true north, as defined by the earth’s
axis of rotation.

You may find the following hints useful:

• Work the problem in the body (′′) system. This
system is obviously not the same as the fixed (′)
system. It is also not the same as the unprimed
system, which is the North-South-East-West sys-
tem attached to the earth. Using Euler’s equa-
tions would require knowing the torque from the
bearings, evaluated in the body system. Since
this torque is not known a priori, Euler’s equa-
tions are not useful here.

• Write ωx′′ , ωy′′ , and ωz′′ in terms of Ω, α, α̇,
and θ.

• To get the relationship between the torque N′

applied by the bearings and the angular momen-
tum L′′, first write N′ = dL′/dt (taking advan-
tage of the fact that the (′) system is inertial.)
Then transform L′ to the ′′ system.

• When evaluating L, remember to neglect terms
that are smaller by a factor Ω/ω0 than the lead-
ing terms.
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3.
Consider a coupled oscillator with two equal
masses m, each connected to fixed supports by
springs with unequal spring constants k and k′.
The two masses are connected to each other by
a spring with spring constant k.

Find its two natural angular frequencies.

4.
Consider a double pendulum as exhibited in the
following diagram. The two pendula are of equal
lengths 
, but the lower mass m2 � m1. Choose
θ1 and θ2, the angles between each string and
the vertical, as generalized coordinates.

(a)
Find the natural angular frequencies of oscilla-
tion.
(b)
Calculate the interval T /2 between times for
which one or the other bob has minimum ampli-
tude of oscillation. [Hint: This is π/∆ω, where
∆ω is the difference between the two natural
angular frequencies.]

5.
Consider a linear triatomic molecule, as in the
diagram below. A mass M is connected to two
masses m, one on either side, by springs of equal
spring constant k.

(a)
Find the three natural frequencies of the linear
triatomic molecule.
(b)
One of these frequencies should be zero. To
what motion does it correspond?

6.
In a series LC circuit, choose the charge q and
its first derivative q̇ as independent variables.
Equate the “kinetic energy” T to 1

2Lq̇2 and
the “potential energy” U to 1

2q2/C. Then La-
grange’s equations produce the usual differential
equation for the circuit.

In analogy with this approach, find the resonant
frequencies of the above LC circuit. Do not rely
on loop equations or any other circuit theory.
Instead, write the analogous circuit Lagrangian
and solve formally using coupled oscillator meth-
ods.
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7.
Consider a thin homogeneous plate of mass M
which lies in the x1 − x2 plane with its center
at the origin. Let the length of the plate be 2A
(in the x2 direction) and let the width be 2B
(in the x1 direction). The plate is suspended
from a fixed support by four springs of equal
force constant k located at the four corners of
the plate. The plate is free to oscillate, but with
the constraint that its center must remain on the
x3 axis. Thus, there are 3 degrees of freedom:
(1) vertical motion, with the center of the plate
moving along the x3 axis; (2) a tipping motion
lengthwise, with the x1 axis serving as an axis of
rotation (choose an angle θ to describe this mo-
tion); and (3) a tipping motion sidewise, with
the x2 axis serving as an axis of rotation (choose
an angle φ to describe this motion).
(a)
Assume only small oscillations and show that the
secular equation has a double root and, hence,
that the system is degenerate.
(b)
Discuss the normal modes of the system.
(c)
Show that the degeneracy can be removed by
the addition to the plate of a thin bar of mass m
and length 2A which is situated (at equilibrium)
along the x2 axis. Find the new eigenfrequencies
of the system.

8.
Consider a pair of equal masses m connected to
walls by equal springs with spring constant k.
The two masses are connected to each other by
a much weaker spring with spring constant εk,
where ε � 1. Choose x1 and x2, the displace-
ments from equilibrium of the two masses, as
the generalized coordinates.

For this system, write...

(a)
...the spring constant matrix K and the mass
matrix M
(b)
...the normal frequencies ω1 and ω2

(c)
...the normal mode vectors ã1 and ã2 (corre-
sponding to ω1 and ω2), each expressed as a
linear combination of x1 and x2

(d)
...the 2 × 2 matrix A which reduces M to the
unit matrix via the congruence transformation

I = AtMA ,

where I is the identity matrix
(e)
...the normal coordinates Q1 and Q2 (corre-
sponding to ω1 and ω2), each expressed as a
linear combination of x1 and x2.


